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High-frequency plane sound waves in ideal gases with internal dissipation are 
discussed. Particular applications to dissociating diatomic gases and gases 
displaying vibrational relaxation are considered. A criterion in the form of an 
inequality is derived for the validity of the high-frequency approximation and 
an asymptotic analysis is developed. 

1. Introduction 
Equations of state with one rate-dependent state variable arise in the study of 

gases subject to chemical dissociation or vibrational relaxation. In  the former 
case the possible effects of diffusion are normally neglected so that the purely 
chemical phenomenon is treated in isolation. Comprehensive review articles on 
this field and its applications have been written by Li (1961) and Lick (1967). The 
latter of these articles deals mainly with the subject of one-dimensional wave 
propagation governed by linearized equations. 

Recently Coleman & Gurtin (1967a) have laid down a thermodynamics of 
elastic materials with internal state variables. This theory includes as a special 
case that for an ideal gas, and, with this as background, they have investigated 
the propagation of plane discontinuities of order two or more (Coleman & 
Gurtin 19673). In  particular they give detailed consideration to the behaviour of 
the strength of the discontinuity along the ‘leading characteristic ’. A similar 
though less thorough treatment has been given by Rarity (1967). In  both these 
analyses the predictions of the linear theory are shown to be in error. 

On the basis of a ‘relatively undistorted’ wave approximation, alluded to and 
applied by Varley & Cumberbatch (1966), we shall investigate plane high- 
frequency waves in dissipative gases. The meaning of this terminology becomes 
clear when the same are considered in an ideal monatomic gas. In  this case a one- 
parameter family of solutions exists such that the values of the field variables 
remain constant on the characteristics or ‘wavelets’ which in turn are described 
by straight lines. When a dissipative mechanism is introduced, then such is not 
the case. However, the curvature of the characteristics may under certain circum- 
stances be slight. 

The term undistorted wave is introduced by Courant & Hilbert (1962) in 
their discussion of dispersion in plane waves governed by linear hyperbolic 
equations. In  cases where no dissipative terms are present a one-parameter 
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family of solutions in terms of the phases or characteristics (x-at) ,  where a is 
constant, may be found, When a dissipative term is introduced, then one-para- 
meter families of solutions may still be obtained but they are of exponential type 
while the phase speeds must be less than a. Thus the different phases of a wave 
packet travel with different speeds leading to dispersion. 

Here it is shown that the linear theory is incorrect for high-frequency sound 
waves in gases with internal dissipation. In  fact the linear theory predicts that 
high-frequency waves propagate undistorted with the ‘frozen’ wave speed 
while predicting the correct form of attentuation. A correction to the basic 
approximation is obtained through a formal asymptotic analysis and the 
phenomenon of dispersion is displayed. Similar techniques have been employed 
by Lick (1967) but there the basic approximation is the linearization, which is 
more suited to an analysis of small-amplitude low-frequency waves. 

2. Field equations and relatively undistorted waves 

gas with internal dissipation have the form 
The equations governing one-dimensional time-dependent motions in an ideal 

au au 
at ax 

A-+B-+C = 0, 

Here u is the material velocity, p the pressure, p the density and a an internal 
state variable which may either represent the degree of dissociation in a dia- 
tomic gas or be some measure of vibrational energy in the same. H = H ( p , p ,  a) 
is the specific enthalpy. 

We will be concerned here with the propagation of waves into an equilibrium 
state. An equilibrium state is defined a t  a point (po, vo, ao) in state space as 

where v = I/p. Such a state is said to be (locally) asymptotically stable at 
constant pressure and volume if the solution a( t )  of 

f ( P 0 ,  vo, a01 = 0, (2.2) 

- Da = - f (pO,  wo, a): a(0) = a* 
D t  

exists for all t > 0 and a( t )  -+ao as t+co for all a* such that [a*-aol < 6, 6 > 0. 
This parallels the definition given by Coleman & Gurtin (1967a), and by further 
paraphrasing of the arguments there it may be shown from asymptotic stability 
that 
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where ~(p,,, vo, a) is the entropy and 8 the temperature. The quantity 

- {(aH/aa) - e(arl/aa)l 
is referred to as the affinity of reaction (Prigogine & Defay 1954) and in the case 
of chemical reactions (2.4) is often inferred as a statement of equilibrium from 
chemical kinetics or an Onsager principle by relating f (p,p, a) to the ‘affinity’ 
(De Groot 1951, Prigogine 1963). 

In  the case of a binary dissociated ideal gas the enthalpy has the form (Prigo- 

2 c.  
gine & Defay 1954) 

i = l  M, H = C >hi, (2.5) 

where h, is the partial molar enthalpy given by 

hi = s(O)+RB, (2.6) 

and ci is the concentration by masspi/p of species i, Mi is its molecular weight and 
R the Universal gas constant. Also Dalton’s law of partial pressures 

is obeyed. The concentrations satisfy the relation 

2 

i=l  
c ci = 1, 

and c1 is chosen as a, the degree of dissociation. The following quantities are 

, heat of reaction, 
aH defined : 

he,, = (z) &P I 

It is assumed that Cp, and Cv, a are functions of a only and have polynomial forms 
for small changes in a. It follows from (2.8) that 

he,p = heo,Po + aa 
If the further assumption that heo,Po is constant is made then the enthalpy has the 

(2.10) form 

or equivalently, H = a’/(?- I)+&. (2.11) 

(2.9) acn a 6 .  

H = PCP,&/P(1 +a)R,+ad, d = hoo,P,, 

49-2 
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A relation of the form (2.11) with Cp,a = Q(7+ 3a)R, has been derived from 
kinetic-theory arguments (Li 1961). 

In  the case of vibrational relaxation the enthalpy is taken to have the form 

H = eT(0) + ~,ib(a) + Re/M (2.12) 

(i.e. it is ideal and 8 and a are the ‘translational’ 
respectively), while 

Through the stability condition (2.4), i t  may be 
equilibrium, 

p = pRB/M. 

a, = 2,(0). 

and vibrational temperatures 

(2.13) 

shown that (2.12) implies, at  

(2.14) 

If it is further assumed that the specific heats are independent of the temperatures 
0 and a, while hQ,p is also independent of 8 and a, then the enthalpy has the form 

(2.15) 

The expression (2.15) is again similar to one derived from kinetic-theory argu- 
ments (Li 1961). The relations (2.8) still hold in this case with the exception that 
a = 0 where it appears explicitly. 

In  each case consideredf(p,p, a) is left arbitrary. 
A ‘wavelet’ is defined by a curve $ = $(x7 t), and, on the assumption that 

a$/at + 0, then an equivalent description is t = T(x, 4). Under the transforma- 
tion of co-ordinates (x, t )  to (x, 9) any vector-valued function u transforms as 

u(x7 T(z ,  $1) = U(X, 4). (2.16) 

A relatively undistorted wave is defined by the relation 

where 1 1 .  j j  denotes the Euclidean norm of a vector, and since 

au au a~ au 
ax ax ax at 
- = -+--.-, 

then (2.17) implies that 
au aT au 
_ N _ - -  

ax - ax’at * 

(2.17) 

(2.18) 

(2.19) 

Equation (2.19) holds exactly at an acceleration wave-front propagating into 
an undisturbed region in thermodynamic equilibrium and also on all other 
‘wavelets’ in a non-dissipative gas as then aU/ax = 0, i.e. u(x, T(x, 4)) = U(q5) 
is a solution, 

We may write for (2.1) 
( B ~ - A ) ~ = B - + c  au au 

ax 

so that (2.17) and (2.20) are compatible if 

(2.20) 

(2.21) 
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(2.22) 
aT 

W = -. det(B- W-lA) = 0, ax while 

Thus (a!Z'/ax)-l is an eigenvalue of BA-1 and the 'wavelets' are the characteristics 
of (2.1). As a consequence of (2.22) u must satisfy the compatibility condition 

2 B-+C = O ,  (:: ) (2.23) 

where 1 is the left eigenvector associated with the eigenvalue W-l. 

Then to a first approximation 
The conditions (2.17) and (2.21) may be satisfied at a near equilibrium state. 

(BE-A) $ = 0, (2.24) 

and equations (2.24), (2.22), (2.23) and (2.10) or (2.15) then determine U ( x , $ )  
and T(x,  $) subject to suitable boundary conditions. 

3. First approximation 
The solution of (2.22) yields the eigenvalue 

= u+a, 

where a is the local sound speed defined in (2.8). The left eigenvector associated 
with the eigenvalue (3.1) is 

aH aH 

When (3.1) is substituted in (2.24) and use is made of the relation a2 = yp/p,  the 
resulting equations may be integrated to give the solution appropriate to a plane 
wave propagating into a region in thermomechanical equilibrium, 

a = ao, p = pY, = 2yt (p4(Y-U -p$-lq,  a2 = ypY-1. (3.3) 
Y-1 

Here pa ,  pa and a, are the values of the state variables on the leading character- 
istic and without loss of generality the units of pressure have been chosen so that 
po/p3 = 1. The relations (3.3) hold a t  any fixed station x on any wavelet $ = const. 

4. Variation of wave strength in propagation 

into (2.23) this may be reduced to 
Since (3.3) gives the relations between u, p, p and a, then on substituting (3.2) 

where, from (3.3) and (2.8) 

@+a) = y-l (&(y + l)p4(Y-l) -pB(Y--l) 0 ) *  ( 4 4  
2yh 
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Along with (4.1) and (4.2) we have 

a q a x  = (u + q 1 .  (4.3) 
Equations (4.1), (4.2) and (4.3) along with the remaining boundary conditions 
u(x*,a), where x* = x*( t )  is known and may be a piston path, determine the 
solution. 

In the above the notation of $ 2 ,  where capital letters are used to denote func- 
tional dependence on the variables (x, $), has been dropped. But it should be 
remembered that the solution is being obtained in terms of these variables and 
that the dependence of 6 on (x, t )  is obtained through (4.3). 

As no particular form for f ( p , p ,  a) has been considered the simplification of 
linearization is now introduced by taking 

p = po +p', a = a, + a', u = u', etc., (4.4) 

where the primed quantities are small perturbations of the equilibrium values. 
In  this instance (4.1), (4.2) and (4.3) reduce to 

and 

and it has been assumed that f ( p , p ,  a)  may be expanded in terms of its arguments 
a t  equilibrium. The terms which have been neglected are O{(p'/p,)2) and 
O(p'(ap'/ax)/pE). Since the latter term involves derivatives with respect to the 
variable x in the co-ordinate system (x, $), the above is in no way equivalent to 
the usual linear theories (see Lick 1967). 

Equation (4.5) integrates to give 

u' = g($)exp[-A($-x*)], (x x*), (4.7) 

where 

and g($) = a.'(x*,t), i.e. 6 is the time that a 'wavelet' leaves the station x*. It is 
expected that h will be positive. On substituting (4.7) in (4.6) and integrating, 
the equation of any 'wavelet', $ = const., is obtained: 

(4.8). 
u,(T-- $) = (x-x*) +--- Y + l  g($ )  (exp [ - A(x-x*)] - 1). 

2a, h 

The formation of a shock wave is characterized by aTja$ = 0 so that by 
(4.8), if g'($) > 0, the prime denoting differentiation with respect to $, then such 
will occur where 

In  particular a shock will occur on the wave-front at  that value of x obtained 
from (4.9) by setting $ = 0. The acceleration on any characteristic or wavelet is 
obtained ,from (4.7) as 

(4.10) 
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Along the leading wavelet or wave-front the strength of the discontinuity in 
acceleration is obtained through (4.9) and (4.10) by the relation 

Y + l  
= g‘(O)exp[-h(x-x*)] 1) 

(4.11) 

These results for the behaviour of acceleration discontinuities on a wave-front 
propagating into an equilibrium state have been obtained by Coleman &, 
Gurtin (1967b). 

The relatively undistorted approximation is valid if 

which is satisfied automatically at a wave-front $ = 0 where g(0) = 0 or near a 
shock where aT/a$ = 0. It is also satisfied in the degenerate case of (soh) -+ 0 in 
which case the results for an ideal classical non-dissipative gas are obtained in 
the limit. 

At x = x* = 0, aT/a$ = 1 and the approximation is valid if the local frequency 

W L  = ls’($)/s($)l 9 (aT/a$)aoh = soh. (4.13) 

The validity of the approximation may be extended to all values of (x, q5) provided 

Is’($)/a;4 < M7 Ig($)/aol < 17 (4.14) 

where M is finite, and (4.13) is satisfied. The conditions (4.14) may be satisfied 
by small-amplitude high-frequency sound waves, i.e. the frequency is high in a 
sense relative to the natural time (aoh)-l. The relation (4.13) suggests a parameter 
for an asymptotic analysis. We note through (4.9) that time periodic disturbances 
a t  x = 0 will not remain periodic in x for x > 0. In  particular, shocks may form. 

El = g’(0) exp [ - h(x - x*)] 

A linearized theory would yield instead of (4.11) the result 

at +o 
through the assumption 

Is’(~)/s($)ao~l = O(l )>  

which we have seen to  be completely erroneous in the above instances. 

5. Weak shock waves 
By a simple variant of the treatment of shock waves given by Serrin (1959) it  

may be shown that the behaviour of a dissipative gas through a shock is exactly 
similar to that of its non-dissipative counterpart. In  particular the relations 

[..I = 0, [rl 2 0, 

where the brackets denote the discontinuity in a variable across the shock, must 
hold. For weak shocks the entropy jump is third order in the density jump, while 
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the shock speed U is that of the local speed of sound to a first approximation, 
i.e. U N a. 

In  the limit of weak shocks the relations (3.3) appropriately linearized satisfy 
the compatibility conditions which must hold across a shock, i.e. the jumps in 
any variable when computed from (3.3) for two values of 4 satisfy these con- 
ditions. 

Since two characteristics, say 4, and q52, coalesce at  a shock it follows from 
(4.7) that 

The speed G of the shock surface is then given by 
(5.1) [%I = [S( $1) - S(42)l exp [ - 4x- x*)l. 

G = +{(a1 + u1) + (a2 + u2)> 
to a first approximation and through (4.3) the relation 

is then derived. 
Also a t  the shock t ,  = t ,  and x1 = x2 where (xl, t l )  and (x2, t,) are the co- 

ordinates of a point on q5, and q52 respectively. Therefore through (4.8) it is 
implied that at  the shock 

In general characteristics have the explicit form 

t = f ( x , 4 ) + 4  (5 .5)  

and any curve which is intersected by these curves may be represented in 
(x, 4 )  co-ordinates. Since the shock will be described by a curve t = s (x) ,  it  follows 
from (5.5) and the implicit function theorem that along the shock 

4 = +(XI> (5.6) 
say. Therefore on the shock wave we have, on substituting (5.6) in (5 .5))  

t = f(G +(x)) + $(4. 
Considering the specific form of (5 .5 ) ,  which is (4.8), we derive a further relation 
for the shock speed G: 

and this holds for both the 4, and $2 sets of characteristics or wavelets. Equations 
(5.3) and (5.7) then imply that on the shock the relation 

must be satisfied by 4, and 42. The shock path is then determined by (4.8), 
(5.4) and (5.8).  
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The above derivation parallels that given by Varley & Cumberbatch (1966) for 

In  the case of a shock propagating into an undisturbed region then (5.3) and 
cylindrical and spherical waves in a non-dissipative ideal gas. 

(5.7) yield the relation 

as $1 = 0, and this integrates to 

-- Y + (exp [ - h(x - x*)] - 1) = 21; g(s)cis/g2(#2). (5.10) 

This result is similar to that obtained by Whitham (1956)’ whose result follows 
from (5.10) in the limit h+O. Taking the limit of (5.10) as #2 tends to zero we find 

lim 2j0~*S(S)dS/S2(#J2) = rg‘(o)l-l’ (5.11) 
$3’0 

which confirms the result obtained from (4.9)’ via. that the shock first occurs 
when aT/a$ = 0. If the compressive phase of a wave is followed by one of rare- 
faction, then g(#)  has a zero and some of the wavelets in the neighbourhood of 
this ‘zero’ wavelet will not catch up the shock. It follows that the integral in 
(5.10) is bounded and that at  large distance 

2a; A 

(5.12) 

From (4.7) and (5.12) it then follows that 

[u] cc (3 (1 - exp [ - ~ ( x  - x * ) l )  exp [2h(x - x*)l . (5.13) 

Similarly, the distance by which the shock is ahead of the ‘zero’ wavelet 
t = #,, + x/qo, increases by an amount 

2a; h )” 

(1 -exp [ -h(x-x*)]) (5.14) 

In  the limit h + 0, all of the above reduce to those obtained by Whitham (1956) 
for a non-dissipative ideal gas. 

6. Asymptotic analysis 
The analysis in $4 has suggested a parameter aoh with which to form an asymp- 
totic analysis. It was seen there that the ‘undistorted’ approximation was valid 
provided (4.13) and (4.14) were satisfied. In  this section the propagation of 
‘ high-frequency ’ harmonic waves is considered. At x = 0, the initial conditions 
are taken to be 

x = w2u( 1 - cosp), u = o-lcsinp, t = o-lp (6.1) 
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so that a given wavelet is described by p = const. and the conditions (4.13) and 
(4.14) are seen to be satisfied for w/a,h 9 1. The constant B is then the maximum 
acceleration and is finite. 

Again, the transformation of § 2 is employed so that 

t = T(x,  p: w). (6.2) 

aTla,8 = w-l-w-’b(a+u)-lsinp. (6.3) 

Equations (6.1) and (6.2), imply the further boundary condition 

In terms of characteristic co-ordinates the equations to be satisfied are 

aT 
- ax = (a+u)-1. 

We now consider asymptotic expansions of the form 

I N N N 

n=l n = l  n=l 
u = C enUn(X,P) ,  P = P O +  X @Yn(x ,p ) ,  p = P O +  c S ~ P , ( X , ~ ) ,  

N 

as these are suggested by the conditions (6.1) and (6.3). The constants appearing 
in (6.5) are the equilibrium values of the respective variables and B = W-1, while 
successive terms such as u, and u,+~ have the ratio u,/u,+~ = O(a,h). 

By equation (6.4) aupp is not uniquely determined in terms of au/ax and C on 
characteristic curves described by the eigenvalue aT/ax and by (6.5) this has an 
asymptotic expansion. There exists for each eigenvalue a left eigenvector I and 
since there is an asymptotic expansion for each eigenvalue it is implied that a 
similar expansion exists for I ,  viz. 

N 

n = l  
I = I , +  s An. (6.6) 

Also, on any characteristic curve the relations 

must hold. 
Equations (6.4), (6.5) and (6.7) form the basis of the approximating scheme. 

Zeroth approximation 
On substituting (6.5) into (6.4) and equating coefficients of zero powers of e to 
zero in both the resulting relation and (6.7), we obtain 

Z , { B , ~  X -A, = 0. 
.aTo I I 
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The solution of these appropriate to the boundary condition (6.2) are 

To = 

779 

and 

First approximation 

Similarly it is found, by equating coefficients of the first power of F to zero, that 

(6.10) 

The first three of equations (6.10) and the appropriate boundary conditions 
from (6.1) and (6.2), viz. u1 = crsinp, Tl = p, have the solution 

(6.11) I u1 = gsinPexp[-h(x-x*)], 

ao( Tl -p) = '2' (T sin p (exp [ - h(x - x*)] - 1) .  

When these, appropriately factored by w-l, are added to (6.9) then the total is 
exactly that solution obtained in 3 4. Also we have the relations that 

P1 = aoPo% P1 = (Po/ao)u,. (6.12) 

A usual linear theory would replace (6.10) by (6.8) (see Lick 1967). 
The solution of the fourth equation of (6.10) for Z(l) contains P)  but this may be 

subtracted as being superfluous. It may be readily verified that the solution of 
correct physical dimensions is 

2a0 h 

By reference to the solution in 54, it is implied by (4.9) that shocks will occur 
on all wavelets for which g ' ( p )  is a maximum, i.e. on p = 277n (n = 0 ,1 ,2 ,  . . .). 
These will first be located a t  the station 

1 2 4  h 
x = --lo h g ( l - m F ) -  

(6.14) 

Also through (5.3) it is seen that the shocks formed on p = 2nn (n = 1,2,  ...) 
propagate with the speed of sound and so a constant distance apart. The leading 
shock however moves ahead of that on p = 2n as is indicated by (5.14). 
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shock a t  the same instant and the substitution 
Any two wavelets pZ = 27rn + $ and p1 = 27rn - q5 with n .f: 0 coalesce with the 

g(/3,) = - g(pl) = @-lo- sin $ (6.15) 

satisfies (5.7). By (5.4) these two wavelets reach the shock where 

(6.16) $ (exp[-h(x-x*)]- 1) = -~ 
2a: h rrsin#‘ 
Y+l 

Therefore it is implied by (6.16) and (5.1) that’ the strength of these shocks 
(p = 27rn, n = 1,2, . . .) decays like 

[u] K exp [ - A(x - x*)]/( 1 - exp [ - h(x - x*)]). 

Those wavelets p which lie in the region 

(2n-2)n+$ < p < (2n)n-$ (n = 1,2, ...) 

never coalesce with a shock and so form the expansion regions separating the 
shocks. 

Xecond approximation 

The analysis required to obtain the full second approximation is algebraically 
complicated but as it is of interest to enquire into the behaviour of the variable a,  
which has remained constant up to the first approximation, this will now be 
sketched out. The second-order equations are 

aT,/ax = {(al + ul)z/ao - (a2 + u,))ao2, (6.17 a) 

while the remaining equation for P) is not considered. 
In  (6.17 b)  the rank of the matrix on the left is three and so we choose to ignore 

the third of the system of equations which (6.17 b )  represents. Employing (6.11) 
and (6.12) and integrating 

Y + l  
- u2 + (ao~o)-1p2 = g’(r)  (exp [-As] - 1) 

1 Y + l  
2a0 

+ - g ’ ( r )  exp [ - hs] g(r) exp [ - As] dr, (6.1 8 a) 
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The arbitrary functions of x which arise in the integration are zero as the functions 
u2, p27 p 2  and a2 are zero on p = 0 (the leading characteristic) for all x. The last 
of these, viz. a2, is independent of the others but is dependent in its behaviour on 
what has occurred on the precursor wavelets. Thus, on integrating (6.18c), 

a2 = { r&) oai + 6) ,i e-hs { :$ g2((p)  (echs - 1 )  +Io’ g(r) a,), (6.19) 
a0 

and it is seen that at  the ‘piston’, x = x*, the degree of internal excitation induced 
is 

(6.20) 

which is out of phase with the velocity wave. I ts  period is twice that of velocity 
and its effect is to induce frequency ‘dispersion’ in the velocity wave. 

As in the first approximation the variation of u2, p 2  and p 2  is obtained by 
substituting (6.18) into ( 6 . 1 7 ~ ) .  With the particular forms of the specific en- 
thalpy given by (2.10) and (2.15) the zeroth and fist-order coefficients in (6.6), 
which are given by (6.8) and (6.13), are 

where 

which is of course zero if the enthalpy has the form (2.15). After some algebra the 
solution for u2 satisfying (6.1) and (6.3) is found to be 

where 

The integral term in (6.22) is less rapid in its decay than any other term so that 
at large distance its effect is greater. 
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characteristic relation satisfying (6.1) and (6.3) is obtained in the form 
On substituting (6.18) and (6.22) into (6.17), the second correction to the 

where 

(6.23) 

and again 6 = 0 if the form (2.15) is chosen for the enthalpy. This relation (6.23) 
shows that the disturbance maintains its full cycle period 2n/w but that due to the 

dependence of Tz on g(r )dr  frequency ‘dispersion’ is present. 
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